摘要 为解决高超声速飞行器因承受巨大的气动阻力而严重影响其飞行性能的问题,采用计算流体动力学(CFD)数值方法研究了气动杆高超声速减阻机理,结果表明:气动杆将钝头体前方原始弓形激波转化为类斜激波,降低了激波强度和总气动阻力;气动杆构型的再附激波强度弱于原始弓形激波强度,从而降低了钝头体前端的壁面压力分布;气动杆构型的总气动阻力主要来自于钝头体,且主要是由压力引起的。此外随气动杆长径比的增大,阻力系数降低的速率逐渐减小。 The hypersonic vehicles are subjected to severe aerodynamic drag,which seriously affects its flight performance.This paper studies the hypersonic drag reduction mechanism of spike by CFD numerical method.The results show that the spike converts the initial bow shock wave in front of blunt body into oblique shock wave to reduce the shock intensity and total aerodynamic drag.The spike configuration has the weaker reattachment shock wave than the original bow shock wave,thus reduces the wall pressure distribution of blunt body.The total aerodynamic drag of the spike configuration is mainly from the blunt body and caused by the pressure.In addition,as the length-diameter ratio of spike increases,the changing rate of drag coefficient reduction gradually decreases.
出处 《机械设计与制造工程》 2021年第2期75-78,共4页 Machine Design and Manufacturing Engineering
基金 国家自然科学基金资助项目(52002181) 博士后创新人才支持计划(BX20190152) 中国博士后科学基金资助项目(2019M660118) 江苏省博士后科研资助计划项目(2019K127) 江苏高校优势学科建设工程资助项目。