基于自适应遗传算法的联合投送路径优化设计研究
更新日期:2021-06-03     浏览次数:143
核心提示:摘要研究了联合投送最优联合投送路径规划方案问题,提出基于最小费用最大流、排队论思想,协同进化的自适应遗传算法并对模型求解,较好地解决了易陷入局

摘要 研究了联合投送最优联合投送路径规划方案问题,提出基于最小费用最大流、排队论思想,协同进化的自适应遗传算法并对模型求解,较好地解决了易陷入局部最优解、收敛速度慢的问题。首先将交通路线转化为有向虚拟网络,对整个联合投送作战地域进行划分,充分考虑总任务完成时间、各编组投送时间、总投送里程、道路负荷等因素,引入带有混合时间窗的惩罚函数,建立联合投送路线管理模型,优化联合投送路径安排,逐步优化联合投送路径。 Studies the optimal joint delivery path planning problem, and an adaptive genetic algorithm based on minimum cost and maximum flow and queuing theory is proposed to solve the model. Firstly convert traffic routes to the virtual network, and divide the whole project operation town. Fully considering the addition completion time, the marshalling delivered time, those in mileage and load factors, introduce the punishment function with mixed time window, establish joint delivery route management model, optimizing the joint project path arrangement, and gradually change the joint project path.
作者 张恩泽 高毅 张辉 ZHANG Enze;GAO Yi;ZHANG Hui(Troops 95486;Troops 96756;Department of Basic Courses,Rocket Force University of Engineering,Xi’an 710025,China)
出处 《河南教育学院学报:自然科学版》 2021年第1期27-33,共7页 Journal of Henan Institute of Education:Natural Science Edition
基金 陕西省教育厅教育教学重点攻关课题(19BG038)。
关键词 联合投送 Warshall-Floyd算法 自适应遗传算法 路径最优模型 joint delivery Marshall-Floyd algorithm adaptive genetic algorithm path optimal model