高观点下抓住函数性态本质解决高考导数压轴题的方法探讨
更新日期:2024-09-03     浏览次数:22
核心提示:审稿意见一、文章总体评价本文《高观点下抓住函数性态本质解决高考导数压轴题的方法探讨》由刘睿喆、陈昱、刘续撰写,旨在通过高观点(高等数学视角)

 审稿意见
一、文章总体评价
本文《高观点下抓住函数性态本质解决高考导数压轴题的方法探讨》由刘睿喆、陈昱、刘续撰写,旨在通过高观点(高等数学视角)解决高考导数压轴题,提出了一种新颖且有效的解题思路和方法。文章逻辑清晰,内容详实,具有较强的理论深度和实践指导意义,符合《数理化解题研究》的投稿要求。

二、具体审稿意见
文章选题
优点:选题紧扣高考数学中的难点问题——导数压轴题,具有较高的实际应用价值。通过引入高观点,为解决此类问题提供了新的视角和方法,具有创新性。
建议:可进一步强调选题的重要性和紧迫性,如导数题在高考中的分值占比、学生解题的普遍困难等,以增强文章的说服力。
文章结构
优点:文章结构完整,层次分明,包括引言、预备理论、典型例题剖析、讨论和结语等部分,便于读者理解和掌握。
建议:部分段落可以适当合并或精简,以突出核心内容和关键点。
理论深度
优点:文章引用了高等数学中的相关理论(如费马定理、根的存在性定理、柯西中值定理等),为解决导数压轴题提供了坚实的理论基础。
建议:可进一步阐述这些理论在高考导数题中的具体应用方法和注意事项,以便读者更好地理解和应用。
例题剖析
优点:通过详细剖析两道典型例题(2023年新高考Ⅱ卷第22题和2024年T8联考第22题),展示了高观点在解决导数压轴题中的具体应用,具有较强的示范性和指导性。
建议:可增加更多类型的高考导数压轴题进行剖析,以进一步验证和巩固文章提出的方法论。
讨论与反思
优点:文章对高观点下的解题思路进行了深入的讨论,并提出了在实际应用中可能遇到的问题和解决方案。
建议:可增加对学生认知障碍和心理因素的分析,以及教师在教学过程中如何引导学生有效应用高观点的思考。
语言与表达
优点:文章语言流畅,表述清晰,逻辑严密,便于读者理解和接受。
建议:部分专业术语可增加注释或解释,以便非专业读者更好地理解。
参考文献
优点:文章引用了多篇国内外相关文献,表明作者对该领域的研究现状有较为全面的了解。
建议:可进一步筛选和引用更具权威性和代表性的文献,以增强文章的学术性。
三、总体结论
综上所述,本文《高观点下抓住函数性态本质解决高考导数压轴题的方法探讨》具有较高的学术价值和实践意义,符合《数理化解题研究》的投稿要求。建议在作者根据以上审稿意见进行修改和完善后,予以录用。

希望以上审稿意见对作者有所帮助,期待看到更加完善的终稿。