基于深度神经网络Mask R-CNN胆囊癌辅助识别系统临床应用价值研究
更新日期:2021-05-27     浏览次数:164
核心提示:摘要目的探讨基于深度神经网络的目标检测技术在腹部双源CT胆囊癌辅助识别系统的临床应用价值。方法选取2017年1月至2019年12月上海交通大学医学院附属

摘要 目的探讨基于深度神经网络的目标检测技术在腹部双源CT胆囊癌辅助识别系统的临床应用价值。方法选取2017年1月至2019年12月上海交通大学医学院附属新华医院普外科、吉林大学第一医院肝胆胰外一科和吉林大学中日联谊医院普外科收治的88例病理学检查诊断明确的胆囊癌,28例慢性胆囊炎胆囊结石病人和29例正常胆囊(影像学检查胆囊正常)病人,均行腹部双源CT检查。随机选取101例作为训练组,29例作为验证组,15例作为测试组。首先,利用已标注的10409张腹部双源CT图像对Mask R-CNN模型进行学习,从而建立自动胆囊癌辅助识别系统。然后对验证组的2974张CT图像通过专业的医师对其进行判断识别,与Mask R-CNN得出的结果进行对比分析。通过不同交并比阈值(IoU)下的平均检测精度(AP)和平均召回率(AR)来对性能进行评估。结果计算机通过学习组不断迭代训练,Mask R-CNN的损失函数值收敛,诊断误差不断降低。在IoU为0.5时,Mask R-CNN的边界框和掩膜的AP分别为0.929和0.929,IoU为0.75时的边界框和掩膜AP分别为0.901和0.890,IoU为0.5:0.95时的边界框和掩膜AP分别为0.723和0.707,平均召回率分别为0.794和0.774,模型的性能良好。结论基于深度神经网络的Mask R-CNN胆囊癌辅助识别系统具有较高的准确率和性能,可辅助进行临床诊断。 Objective network Mask R-CNN.MethodsThe research selected 88 patients with gallbladder cancer,28 patients with chronic cholecystitis with gallbladder stones and 29 patients with normal gallbladder tissues who underwent abdominal dualsource CT examination and diagnosed by pathology from January 2017 to December 2019 in Department of General Surgery,Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,First Department of Hepatobiliary and Pancreatic Surgery of Jilin University and Department of General Surgery,China-Japan Friendship Hospital of Jilin University.One hundred and onecases as the training group,29 cases as theverification group and 15 cases as the test groupwere selected randomly.Firstly,using deeplearning technique,researchers trained the 10409 abdominal dual-source CT images data oflearning group with convolution neural network tosimulate the judgment process of radiologists,andestablished an artificial intelligence automaticrecognition system for gallbladder cancer.Then,2974 images of the validation group wereclinically validated.The performance was evaluated by the average detection accuracy(AP)and average recall(AR)under different intersection ratio thresholds(Io U).ResultsAfter continuous iteration training of the learning group data,the loss function value of Mask R-CNNdecreased continuously,and the diagnostic error decreased continuously.When the Io U was 0.5,the AP of the boundingbox and mask of Mask R-CNN were 0.929 and 0.929,respectively.When the Io U was 0.75,the AP of the bounding boxand mask were 0.901 and 0.890,respectively.When the Io U was 0.5:0.95,the AP of the bounding box and mask were0.723 and 0.707,and the AR was 0.794 and 0.774;respectively.It suggested the performance of the model was good.ConclusionThe Mask R-CNN for gallbladder cancer automatic recognition system based on deep neural network hashigh accuracy and high efficiency,and has the clinical significance of auxiliary diagnosis.
作者 尹梓名 孙大运 翁昊 任泰 杨自逸 李永盛 王广义 王传磊 曹宏 刘颖斌 束翌俊 YIN Zi-ming;SUN Da-yun;WENG Hao(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《中国实用外科杂志》 CAS CSCD 北大核心 2021年第3期310-314,共5页 Chinese Journal of Practical Surgery
基金 国家自然科学基金资助项目(No.81801797,No.31701108,No.81701749) 上海市青年科技英才扬帆计划(No.17YF1411700)。
关键词 胆囊癌 深度学习 目标检测 人工智能 gallbladder cancer deep learning object detection artificial intelligence