基于Landsat TM数据的大兴安岭盘古林场森林健康评价
更新日期:2021-06-08     浏览次数:162
核心提示:摘要【目的】健康评价是实施森林资源健康经营的前提和基础,但现有研究多从单一尺度开展,未充分考虑森林生态系统的层级结构。为此,该文以林木冠层特征

摘要 【目的】健康评价是实施森林资源健康经营的前提和基础,但现有研究多从单一尺度开展,未充分考虑森林生态系统的层级结构。为此,该文以林木冠层特征为基础,结合Landsat TM数据和统计学方法实现森林健康评价的多尺度转换,为我国森林健康经营提供理论依据和技术支撑。【方法】以大兴安岭盘古林场50块固定样地单木健康调查数据为基础,采用熵值-AHP综合指数法构建单木健康评价模型,并汇总得到样地尺度健康得分的平均值(Hm)、标准差(Hstd)、变异系数(Hcv)、偏度(Hpd)和峰度(Hfd)共5项统计指标,结合Landsat TM和地形数据并采用非线性度量误差联立方程组模型构造区域尺度森林健康评价综合反演模型,实现了森林健康从单木-林分-区域的多尺度综合评估。【结果】样地调查结果表明:盘古林场单木健康得分均值为0.6638±0.0912,整体处于亚健康水平,其中亚健康树木所占比例最高(79.43%);区域内不同树种健康等级间差异显著,主要表现为云杉>白桦>兴安落叶松>山杨>樟子松;林分尺度健康得分的Hm、Hstd、Hcv、Hpd和Hfd值分别为0.6633、0.0841、12.84%、-0.6076和0.8460,表明该地区约78.43%的林分中单木健康得分呈明显左偏尖削状正态分布;遥感反演结果表明:区域内森林健康得分Hm均值约为0.6194±0.0543,其主要受地形(DEM)、植被指数(RVI、DVI、EVI和Green)和原始波段(B1、B3)等多种因素的综合影响,所建模型的预估精度可达到75%以上,能够满足森林健康评价的需求;林场范围内林木健康得分整体呈现南低北高的格局,且Hm较高区域主要集中在居民点、道路沿线等交通便利地区。【结论】盘古林场森林整体以亚健康为主,亟待开展科学的健康经营;同时,该文提出的以林木冠层特征为基础并充分结合遥感数据和统计学方法,能够有效实现森林健康的多尺度评价。 [Objective]Health assessment is one of the important prerequisites for implementing sustainable forest management,however most of the previous studies were carried out only on a single scale,without considering the hierarchical structures of forest ecosystems.Therefore,the present study focused on the canopy characteristics,and studied the method of scale transformation for the forest health assessment by the remote sensing and statistical method,which can provide theoretical support and guidance for the forest health management in China.[Method]based on the datasets of individual-tree health survey from 50 sample plots in Pangu Forest Farm,the health assessment model of individual-tree was constructed using the entropy-AHP comprehensive index method.Five commonly used statistical indicators,namely mean value(Hm),standard deviation(Hstd),coefficient of variation(Hcv),skewness(Hpd)and kurtosis(Hfd),were summarized for each sample plot based on the health assessment results from tree-level.Then,a comprehensive forest health assessment model of regional-level was developed by combining the Landsat TM and topographic data using the nonlinear error-in-variable simultaneous equations model.Finally,the forest health status and their spatial distribution characteristics of Pangu Forest Farm were quantitatively analyzed.[Result]The sample plot survey datasets indicated that the average health score of individual-tree in Pangu Forest Farm was 0.6638±0.0912,belonging to the sub-health level,among which the proportion of sub-healthy trees was the highest(79.43%);the differences of the health grades among different tree species were significant,namely Picea asperata>Betula platyphylla>Larix gmelinii>Populus davidiana>Pinus sylvestris;the statistical values of Hm,Hstd,Hcv,Hpd and Hfd,for the health scores at stand-level were 0.6633,0.0841,12.84,-0.6076 and 0.8460,respectively,indicating that approximately 78.43%of the total forests had a significant left-pointed normal distribution;the remote sensing i
作者 董灵波 高小龙 朱宇 刘兆刚 Dong Lingbo;Gao Xiaolong;Zhu Yu;Liu Zhaogang(School of Forestry,Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education,Northeast Forestry University,Harbin 150040,Heilongjiang,China;Faculty of Life Science and Technology,National Engineering Laboratory for Applied Technology of Forestry&Ecology in South China,Central South University of Forestry and Technology,Changsha 410004,Hunan,China)
出处 《北京林业大学学报》 CAS CSCD 北大核心 2021年第4期87-99,共13页 Journal of Beijing Forestry University
基金 国家重点研发计划课题(2017YFC0504103) 国家自然科学基金项目(31700562)。
关键词 TM数据 森林健康 度量误差模型 空间分布 大兴安岭 TM data forest health error-in-variable model spatial distribution Great Xing’an Mountains