首页 » 职称论文 » 经济 » 正文
上市公司高管连锁网络与分析师盈余预测精度
更新日期:2021-06-09     浏览次数:165
核心提示:摘要以2011~2017年度沪深两市A股上市公司为样本,从私人信息供给的视角,考察企业高管连锁网络对分析师盈余预测精度的影响。研究表明:上市公司网络中心

摘要 以2011~2017年度沪深两市A股上市公司为样本,从私人信息供给的视角,考察企业高管连锁网络对分析师盈余预测精度的影响。研究表明:上市公司网络中心度显著提升了分析师盈余预测精度;当上市公司的公开信息不充分时,其网络中心度对分析师盈余预测精度的提升效果更明显;当上市公司高管与连锁公司其他高管互动机会越多时,其网络中心度对分析师盈余预测精度的提升效果越明显。上述结果表明,上市公司的高管连锁网络上存在泄露的私人信息,这些信息能够被分析师捕获,最终丰富金融市场中的信息供给。进一步研究发现,上市公司高管连锁网络上流动的私人信息包含公开渠道上常常被延迟披露、甚至被隐藏的坏消息,有助于纠正分析师的公开信息偏差。研究结果拓展了分析师盈余预测的相关研究,有助于加强对上市公司私人信息流动方式的理解。 Using the sample of A-share listed firms in China from 2011 to 2017,this paper attempted to examine the impacts of the interlock network centralities of the top management team(TMT)of firms on the accuracy of earnings forecast of analysts,from the perspective of private information supply.The results show that the network centralities of firms significantly improve the accuracy of the forecasts of analysts.This effect is more pronounced with firms whose public information is not sufficient.Besides,this effect is more pronounced with firms whose senior managers have more opportunities to interact with the senior managers in interlocked firms.These findings show that there exists private information in the interlock network of TMT of firms,which can be captured by analysts to enrich the information supply in the financial market.Further tests show that the private information existed in the social network of firms contains the bad news that is often delayed and even hidden in the public channel,which rectifies the information biases of analysts.These findings may enrich the research on the forecasts of analysts,and contribute to a better understanding of private information flow of listed firms.
作者 曹世蛟 王建琼 CAO Shijiao;WANG Jianqiong(School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)
出处 《系统管理学报》 CSCD 北大核心 2021年第2期296-306,共11页 Journal of Systems & Management
基金 国家社会科学基金资助项目(16BGL004)。
关键词 社会网络 网络中心度 高管连锁 盈余预测 私人信息 social network network centrality top management team(TMT)interlock earnings forecast private information