摘要 设计了一种基于圆柱形蓄热单元的相变储热水箱,以主材为醋酸钠的复合无机盐作为相变材料(Phase Change Material,PCM)。通过单变量控制法探究了初始温度为30℃时,改变不同入口流量0.25、0.35、0.45 m3/h及不同入口温度80、85、90℃工况下蓄热装置的蓄热性能,并通过FLUENT软件进行对应工况的仿真模拟以探究蓄热过程中PCM具体熔化过程以及液相率的变化情况。结果表明:蓄热水箱内均流板和隔层板使水箱内各区域温度分布均匀,换热流体与各个蓄热单元同时进行换热,有效提升装置的蓄热效率;在蓄热过程中,增大入口流量与入口温度均会减少蓄热水箱的总体蓄热时间。模拟过程中,入口流量0.35、0.45 m3/h较0.25 m3/h工况下PCM熔化时间分别减少14.2%与26.7%;入口温度85、90较80℃工况下PCM熔化时间分别减少17.8%和25%。 The article designs a phase change hot water storage tank based on a cylindrical heat storage unit,and uses a composite inorganic salt whose main material is sodium acetate as a phase change material(PCM).Through the single variable control method,when the initial temperature is 30℃,the performances of heat storage device under different inlet flow rates of 0.25,0.35,0.45 m3/h and different inlet temperatures of 80,85,and 90℃ are explored.In addition,FLUENT is used to simulate the corresponding working conditions to explore the specific melting process of PCM and the change of liquid phase rate during the heat storage process.The results show that:the flow-sharing plate and the interlayer plate in the hot water storage tank make the temperature distribution of each area in the water tank even,and the heat transfer fluid(HTF)exchanges heat with each heat storage unit at the same time,it effectively improves the storage capacity of the device.During the heat storage process,increasing the inlet flow rate and inlet temperature will reduce the overall heat storage time of the hot water storage tank.In the simulation process,the inlet flow rate is 0.35 m3/h and 0.45 m3/h compared with the case of 0.25 m3/h.The melting time of PCM is reduced,by 14.2% and 26.7%,respectively,and the melting time of PCM at the inlet temperature of 85℃ and 90℃ is reduced,by 17.8% and 25%,respectively compared with 80℃.
机构地区 内蒙古科技大学机械工程学院
出处 《实验室研究与探索》 CAS 北大核心 2021年第4期43-47,共5页 Research and Exploration In Laboratory
基金 内蒙自治区科技创新引导奖励资金项目(KCBJ2018031,2017CXYD-2)。
关键词 相变蓄热单元 蓄热水箱 熔化过程 蓄热 热分层 phase change heat storage unit hot water storage tank melting process heat storage thermal stratification