基于特征直方图核密度聚类算法的作物叶片病变区域的快速检测
更新日期:2019-10-12     来源:计算机学报   作者:刘哲  浏览次数:247
核心提示:基于特征直方图核密度聚类算法的作物叶片病变区域的快速检测摘要植物病虫害会严重影响植物的健康生长,对生态环境造成破坏。对于农作物而言,病虫害会

基于特征直方图核密度聚类算法的作物叶片病变区域的快速检测

摘要 植物病虫害会严重影响植物的健康生长,对生态环境造成破坏。对于农作物而言,病虫害会严重降低农作物的产量,以至于威胁到人类的生存。作物病虫害发作的特征主要体现在植物叶片发生病变,所以通过机器视觉对作物叶片病变区域进行检测,是目前的研究热点,这对于植物病虫害的早期发现和防治具有重要意义。针对病变叶片图像的复杂性和模糊性,提出一种基于特征直方图核密度聚类算法的植物叶片病变区域快速检测方法。首先,将病变叶片图像的颜色空间从RGB转换到Lab空间,在此基础上,根据病变叶片的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合特征直方图曲线的峰值点和峰值区域;接着,在峰值点和峰值区域运用meanshift算法初步确定族类中心;其次,根据初步确定的病变叶片图像的族类中心,运用K-means算法快速完成对病变叶片区域的分割;最后,开展了仿真实验验证, 结果表明所提出方法能够快速精确地对病变叶片区域进行分割。

关键词  特征直方图,核密度,聚类算法,病变叶片,均值漂移,K均值

2024-08-06• 基于深度嵌入模型的蛋白质组学质谱图增量聚类算
审稿意见标题:基于深度嵌入模型的蛋白质组学质谱图增量聚类算法一、总体评价本文提出了一种基于深度嵌入模型和faiss库的增量聚类算法,用于蛋白质组...
2022-08-25• 气温日变化规律及其与其他气象数据的相关性
二、资料及分析方法 使用的资料是广州国家自动观测站2015年一月至2019年十二月期间的整点温度数据。选 取这段时间是因为2014年初广州站进行设备升级,...
2021-05-08• 基于逻辑运算的离散人工蜂群优化双聚类算法
摘要基因表达数据是由DNA微阵列实验产生的大规模数据矩阵,双聚类算法是挖掘数据矩阵中具有较高相关性的子矩阵,能有效地提取生物学信息。针对当前多目...
2020-05-25• 基于K-means聚类算法的电驱产线监测模型的建立
《基于K-means聚类算法的电驱产线监测模型的建立与软件的实现》为作者:张亮亮最新的研究成果,本论文的主要观点为新能源汽车的电驱动总装呈现典型的...
2019-04-29• 基于改进的局部异常因子检测的优化聚类算法
《基于改进的局部异常因子检测的优化聚类算法》为作者:游子毅最新的研究成果,本论文的主要观点为聚类分析在无监督学习领域中一直备受国内外学者关注...